Tevatron Results QCD, Top Quark, Exotic Physics

Christian Schwanenberger

University of Manchester

on behalf of

CELEBRATING 350 YEARS

SOCIETY

the CDF and DØ Collaborations

Hadron Collider Physics Summer School Fermilab 08/20/2010

MANCHESTER

Tevatron Results – Outline

Part I:
QCD
Top quark physics

Searches for new physics

Part II:
Higgs
Electroweak physics
B physics

Objective of Elementary Particle Physics

"So that I may perceive whatever holds the world together in its inmost folds." Goethe, Faust

from the smallest dimensions in microcosm to the largest dimensions in the universe

Big Bang in the Lab?

- Christian Schwanenberger -

08/20/2010

MANCHESTER

The Tevatron at FERMILAB: pp Collisions

10⁻¹²s after big bang!

at increased energy

Tevatron Integrated Luminosity

Given by Nature (calculated by theorists)

accelerator

Detector (Experimentalist)

Tevatron Instantaneous Luminosity

- peak luminosity of 4.0 10³² cm⁻² s⁻¹
- took many years to achieve this!

The DØ Experiment

The DØ Experiment

The DØ Experiment

The CDF and DØ Experiment

- basic detector operates since 1985:
 - central calorimeter
 - central muon chambers
- major upgrades for Run II:
 - new bigger silicon,
 - new drift chamber, TOF
 - upgraded calorimeter (forward) and muon system
 - upgraded DAQ/trigger
 - displaced track trigger

retained from Run I:

- excellent muon coverage
- compact high granularity Lar calorimeter

new for Run II:

- new silicon and fibre tracker
- new ~2 T solenoid
- upgraded muon system
- upgraded (track) trigger/DAQ

What is a Cross Section?

- differential cross section: $d\sigma/d\Omega$:
 - probability of a scattered particle in a given quantum state per solid angle $d\Omega$
 - e.g. Rutherford scattering experiment
- other differential cross sections: dσ/dE₊(jet)
 - probability of a jet with given E₊
- integrated cross section: $\sigma = \int d\sigma/d\Omega d\Omega$

Measurement:
$$\sigma = (N_{obs} - N_{bg})/(\epsilon L)$$

Luminosity

Cross Section in Hadron Hadron Scattering

cross section is convolution of pdf's and matrix element

- calculations are done in perturbative QCD:
 - possible due to factorization of hard ME and pdf (can be treated independently)
 - strong coupling α_s is relatively large higher orders needed, complicated calculations
 - → measure to test underlying theory

- trigger filters out interesting processes
 - makes a fast decision of wether to keep an event at all for analysis
 - crucial at hadron colliders

Jet Cross Sections

inclusive jet processes: qq, qg, gg

- tests perturbative QCD at highest energies
- highest E_T probes shortest distances
 - Tevatron: $r_a < 10^{-18}$ m
 - could e.g. reveal substructure of quarks

High Mass Dijet Event: M=1.4 TeV

Jet Cross Sections

- excellent agreement with QCD calculation over 9 orders of magnitude!
- no excess at high E_T
 - no hint for quark substructure

Jet Cross Sections

- excellent agreement with QCD calculation over 9 orders of magnitude!
- no excess at high E_T
 - no hint for quark substructure
 - large pdf uncertainties can be constrained by this data

Strong Coupling Constant

- minimize correlations between data and pdf's by restricting analysis to kinematic regions where Tevatron data do not dominate the pdf determination
 - keep 21 data points

$$\alpha_{\rm S}(M_{\rm Z}) = 0.1161_{-0.0048}^{+0.0041}$$

±4%

The Top Quark

needed as isospin partner of bottom quark

 large coupling to Higgs boson ~ 1: important role in electroweak symmetry breaking?

short lifetime: τ ~ 5 · 10⁻²⁵s ≪ Λ⁻¹_{QCD}: decays before fragmenting
 → observe "naked" quark

H

u

discovery

```
PRL 74, 2632 (1995)
PRL 74, 2626 (1995)
```


1995, CDF and DØ experiments, Fermilab

discovery

PRL 74, 2632 (1995) PRL 74, 2626 (1995)

today

~1000 events

1995, CDF and DØ experiments, Fermilab

discovery

PRL 74, 2632 (1995) PRL 74, 2626 (1995)

today

~1000 events

precision

1995, CDF and DØ experiments, Fermilab

discovery

PRL 74, 2632 (1995) PRL 74, 2626 (1995)

today

~1000 events

precision

1995, CDF and DØ experiments, Fermilab

discovery

PRL 74, 2632 (1995) PRL 74, 2626 (1995)

1995, CDF and DØ experiments, Fermilab

today

~1000 events

LHC: top factory

- Christian Schwanenberger -

precision

Top Quark Analyses at the Tevatron

analyses with up to 5.6 fb⁻¹ of data:

several thousands top candidate events per experiment

top pair production

single top production

08/20/2010

new particles

observation by CDF and DØ!

searches for new particles

Top Quark Analyses at the Tevatron

analyses with up to 5 fb⁻¹ of data: several thousand top candidate events per experiment

top pair production

anomalous couplings
rare decays
branching ratios
CKM-Matrix-Element |V_{tb}|
new particles

spin correlations charge asymmetry

 \mathbf{A}_{FB}

mass, charge, width, lifetime

production cross-section production kinematics production through resonances new particles

single top production

08/20/2010

observation by CDF and DØ!

searches for new particles

W

W helicity

Top Quark Pair Production

PRD 78, 034003 (2008)

$$\sigma_{t\bar{t}} = 7.46^{+0.48}_{-0.67} \text{ pb in NNLO}_{approx}$$
(m_{top} = 172.5 GeV)

Top Pair Signatures

Lepton+jets Signatures

Lepton+Jets Topological Cross Section

measure if production rate is as predicted by NLO QCD

 kinematic properties allow separation between signal and background

use variables such as:

energy-dependent quantities:

· e.g. Transverse mass of leptonic top

angular dependent:

• e.g. sphericity

Boosted Decision Trees

Lepton+Jets Topological Cross Section

$$\sigma_{t\bar{t}} = 7.70_{-0.79}^{+0.70}$$
 (stat+syst+lumi) pb

b-tagging

- B hadron lifetime τ ~ 1 ps
- B hadron travel $L_{xy} \sim 3$ mm before decay

- form a 7-variable neural network
- event tagging efficiency 59% (with fake rate of 1%)

Lepton+Jets Cross Section with b-tagging

very powerful tool to reduce the background

 $\sigma_{t\bar{t}} = 7.93^{+1.04}_{-0.91}$ (stat+syst+lumi) pb

- luminosity dominates at ~6%
- b-tagging second largest

Top Pair Production Cross Section

 measure tt/Z+jets cross section and trade luminosity uncertainty for theory uncertainty for Z+jets production

Cross Section Ratios

 measure tt/Z+jets cross section and trade luminosity uncertainty for theory uncertainty for Z+jets production

Top Pair Production Cross Section

tt/Z+jets cross section ratio

$$\sigma_{t\bar{t}} = 7.82 \pm 0.38 \text{ (stat)} \pm 0.37 \text{ (syst)} \\ \pm 0.15 \text{ (Z theory) pb}$$

$$m_{top} = 172.5 \text{ GeV}$$

±7%

$$\sigma_{t\bar{t}} = 7.32 \pm 0.36 \text{ (stat)} \pm 0.59 \text{ (syst)}$$
 $\pm 0.14 \text{ (Z theory) pb}$

 $m_{top} = 172.5 \text{ GeV}$

±10%

to be compared to Tevatron goal of ±10%...

Top Pair Production Cross Sections

combination: ±6%!

all channels measured except for $\tau_{_{had}}$ $\tau_{_{had}}$

The Top Quark Mass

- free parameter in the Standard Model
- check the self-consistency of the Standard Model in combination with W mass measurement
- prediction on Higgs mass

Extraction Techniques: template

- use variables strongly correlated with m_{top}
- compare data to MC with different m_{top} hypotheses

all hadronic

Extraction Techniques: template

- use variables strongly correlated with m_{top}
- compare data to MC with different m_{top} hypotheses

Extraction techniques: matrix element

• probability densities for every event as function of m_{top}

$$P_{sig}(x; m_{top}, JES) = Acc(x) \times \frac{1}{\sigma} \int d^{n} \sigma(y; m_{top}) dq_{1} dq_{2} f(q_{1}) f(q_{2}) W(x, y; JES)$$

PDF's LO-Matrix element

transfer functions (probability to measure x when y was produced)

Lepton+Jets Channel

<u>jet energy scale:</u> translate jet into parton energy

Results in I+jets Channel

maximum Likelihood fit to data:

jet energy scale: translate jet into parton energy

5.6 fb⁻¹

$$m_{top} = 173.0 \pm 0.7 \text{ (stat)} \pm 0.6 \text{ (JES)} \pm 0.9 \text{ (syst)} \text{ GeV}$$

= 173.0 \pm 1.2 GeV

 $\pm 0.7\%$

Tevatron Combination: July 2010

arXiv:1007.3178

$$m_{top} = 173.3 \pm 1.1 \text{ GeV}$$

theory & experiment: uniform treatment of systematics

Single Top Quark Production

direct measurement of $|V_{tb}|$

PRD 74, 114012 (2006)

s-channel:
$$\sigma_{tb} = 1.04 \pm 0.04 \text{ pb}$$

$$\sigma_{tb} = 1.04 \pm 0.04 \text{ pb}$$

$$NNNLO_{approx}$$
, $m_{top} = 172.5 \text{ GeV}$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

t-channel:
$$\sigma_{tb} = 2.26 \pm 0.12 \text{ pb}$$

 $NNNLO_{approx}, m_{top} = 172.5 \text{ GeV}$

It has been challenging for years...

Multivariate Analyses

Boosted Decision Trees

Boosted Neural Networks

Matrix Elements

combine up to 12 different analysis channels:

Multivariate Analyses

Boosted Decision Trees

Neural Networks

Matrix Elements

Likelihood

$$p_{ik} = \frac{f_{ij_ik}}{\sum_{m=1}^{5} f_{ij_im}},$$

$$\mathcal{L}_k(\{x_i\}) = \frac{\prod_{i=1}^{n_{var}} p_{ik}}{\sum_{m=1}^{5} \prod_{i=1}^{n_{var}} p_{ik}}.$$

combine up to 8 different analysis channels:

single top

♠ E_T+jets selection :

recover badly reconstructed e, μ ; include τ

CDF Run II Preliminary, L = 3.2 fb⁻¹
Single Top
W+HF
tt
QCD+Mistag
Other

Single Top Observation

$$|V_{tb}| = 1.07 \pm 0.12$$

$$|V_{tb}| = 0.91 \pm 0.13$$

observation with 5.0σ!

Single Top Quark Observation

Tevatron Single Top Cross Section

$$|V_{tb}| = 0.88 \pm 0.07$$

good agreement with SM in all channels

Cross Sections at the Tevatron

The Unknown beyond the SM

- many good reasons to believe there is as yet unknown physics beyond the SM
 - dark matter+energy, matter/anti-matter asymmetry, neutrino masses/mixing and many more
- many possible new particles/theories:
 - supersymmetry
 - extra dimensions (G)
 - new gauge groups (Z', W', G', ...)
 - new fermions (t', b', e*, ...)
 - leptoquarks
- new physics can show up...
- as subtle deviations in precision measurements
- in direct searches for new particles

Supersymmetry (SUSY)

- SM particles have SUSY partners: differ by ½ unit in spin
 - sfermions (squark, selectron, smuon, ...): spin 0
 - gauginos (chargino, neutralino, gluino, ...): spin 1/2
- no SUSY particles found as yet
 - SUSY must be broken: breaking mechanism determines phenomenology (e.g. mSUGRA, where neutralino is lightest SUSY particle)
 - more than 100 parameters even in "minimal" models

What's nice about SUSY?

- introduces a symmetry between bosons and fermions
- unification of forces possible
 - SUSY changes running of couplings
- dark matter candidate exists:
 - the lightest neutral gaugino
 - consistent with cosmology data
- no fine-tuning required
 - radiative corrections to Higgs acquire SUSY corrections
 - cancellation of fermion and sfermion loops
- also consistent with precision measurements of M_w and M_{top}

Squarks and Gluinos

- strong interaction
 - → large production cross section

- squark and gluino production
 - signature: jets and **½**₊

Squark and Gluino Mass Scenarios

consider 3 cases:

1. $m(\tilde{g}) < m(\tilde{q})$

3. $m(\tilde{g})>m(\tilde{q})$

→ optimize for different signatures in different scenarios

A nice Candidate Event!

A nice Candidate Event!

→ but there is no clear signal...

SUSY Breaking Mechanism: mSUGRA

Trilepton Events: Another Look for SUSY

- search for SUSY partners of W, Z, γ and Higgs bosons
 - decaying via leptons
- signal:
 - 3 leptons and missing ET
- very promising avenue to observe SUSY events
 - jets are abundant at hadron colliders, leptons are rare...

Trilepton Data

- ~11 SUSY events expected for investigated mSUGRA scenario
- 7 events observed which is consistent with 6.6 expected in SM
- → exclude chargino masses up to 145 GeV at 95% C.L.

Conclusions

- very powerful tests of QCD
 - jet cross sections agree with NLO QCD over 9 orders of magnitude
 - strong coupling measured with 4% precision
- top quark physics
 - high precision measurements, many channels analysed
 - mass known with 0.6% uncertainties
 - other properties such as spin accessible for first time
- single top observation + direct measurement of V_{tb}
- searches for new physics: no hint yet but more data and better analysis techniques to come...
- all the results on the web:

CDF: http://www-cdf.fnal.gov/physics/preprints/index.html and http://www-cdf.fnal.gov/physics/physics.html

D0: http://www-d0.fnal.gov/d0_publications/ and http://www-d0.fnal.gov/Run2Physics/WWW/results.htm

Backup

Search for New Physics in Top Production

Search for tt Resonances

- no resonance production in tt
 system is expected in SM
- some models predict tt bound states: e.g. leptophobic Z' with strong 3rd generation coupling

<u>l+jets</u>, 3.6 fb⁻¹

 $M_{z'} > 820 \text{ GeV}$

 search for bumps in tt reconstructed mass spectrum

<u>l+jets</u>, 4.8 fb⁻¹

 $M_{z'} > 9?? GeV$

t-channel vs. s-channel

$$\sigma$$
 (t-channel) = 3.14 $_{-0.81}^{+0.94}$ pb

evidence with 4.80

good agreement with SM prediction

Conclusions

Highlights of top quark physics:

- top pair production
 6% precision, many channels analyses, differential cross section, all good agreement with NLO QCD predictions
- single top observation + direct measurement of V_{tb}
- precision measurements (see next talk)
 top mass with 0.75% uncertainty
- top properties (see next talk)
 new analyses possible such as spin correlation
- searches for new physics in top sector general agreement with SM
- excellent prospects for top physics at the LHC

Flavor Changing Neutral Currents

Top Quark Analyses at the Tevatron

analyses with up to 5 fb⁻¹ of data: several thousand top candidate events per experiment

top pair production

anomalous couplings rare decays branching ratios CKM-Matrix-Element |V_{tb}| new particles

spin correlations charge asymmetry

 A_{FB}

mass, charge, width, lifetime

production cross-section production kinematics production through resonances new particles

single top production

08/20/2010

observation by CDF and DØ!

searches for new particles

W

W helicity

Dilepton Signatures

- less statistics
- less background

→ electron+muon event with b-tagging

MTC

Top Pair Production Cross Section

topological information

b-tagging

$$\sigma_{t\bar{t}} = 8.23 \pm 0.52 \text{ (stat)} \pm 0.83 \text{ (syst)} \\ \pm 0.61 \text{ (luminosity) pb}$$

$$\sigma_{t\bar{t}} = 7.25 \pm 0.66 \text{ (stat)} \pm 0.47 \text{ (syst)} \pm 0.44 \text{ (luminosity) pb}$$

$$m_{top} = 172.5 \text{ GeV}$$

±13%

$$m_{top} = 172.5 \text{ GeV}$$

±13%

achieving good precision (~340 events)

The Tevatron at FERMILAB: PF Collisions

08/20/2010

 IDEA: recover events that fail criteria in cut-based analyses

08/20/2010

- Christian Schwanenberger -

 IDEA: recover events that fail criteria in cut-based analyses

 IDEA: recover events that fail criteria in cut-based analyses

08/20/2010

 IDEA: recover events that fail criteria in cut-based analyses

 IDEA: recover events that fail criteria in cut-based analyses

boosting:

- train tree: T_k
- derive weight: α_k
- retrain tree: T_{k+1} to minimize error
- average: $T = \sum \alpha_i T_i$

 IDEA: recover events that fail criteria in cut-based analyses

 IDEA: recover events that fail criteria in cut-based analyses

 IDEA: recover events that fail criteria in cut-based analyses

